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The global properties of vascular networks grown with an in vitro angiogenesis assay are compared quan-
titatively, using automated image analysis, with the global properties of networks obtained with discrete,
stochastic growth models. The model classes that are investigated are invasion percolation and diffusion
limited aggregation. By matching global properties to experimental data, one can infer which model classes
and parameters are most reflective of angiogenesis in experimental cells. This sheds light on large-scale
emergent properties of angiogenesis from a systems perspective. It is found that invasion percolation is better
than diffusion limited aggregation at matching experimental data. We also present evidence that the distribution
of the lengths of real tubule complexes follows a power law.
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Angiogenesis, the formation of new capillary blood ves-
sels, has become an important area of scientific research. It
plays an important role in embryonic development, tissue
repair and wound healing, tumor growth, and various vascu-
lar diseases �1–3�. Although several angiogenic and antian-
giogenic factors have been discovered and some of the mo-
lecular mechanisms involved in angiogenesis have been
identified �3,4�, it is not fully known how these effects work
together to determine the structural properties of vascular
networks.

Angiogenesis involves interactions among angiogenic
factors, inhibitors, and regulators at molecular, cellular, and
tissue levels �5�. To understand such a complicated process,
one must combine the experimental approach with math-
ematical modeling. The experimental approach enables us to
investigate isolated factors and simple interactions, while
through mathematical modeling we can understand the large-
scale emergent properties of angiogenesis from a systems
perspective.

Various mathematical models of angiogenesis have been
developed �6–9�. Several of these models use partial differ-
ential equations to examine in space and time the distribution
of variables such as endothelial cell density, capillary tip and
branch density, and angiogenic factor concentration. The
models have had some success in capturing the structure and
morphology of capillary networks and even in examining
strategies of antiangiogenesis.

In contrast to these continuous, deterministic models, dis-
crete, stochastic models have also been considered �10–13�.
Many of these models utilize experimental data to derive
some of the model parameters, and have been able to gener-
ate realistic capillary network structures. On the other hand,
some stochastic models do not model angiogenesis at a mo-
lecular, cellular, or tissue level, but rather attempt to capture
the branching morphology of vascular network formation at
a higher level of abstraction. These include invasion perco-
lation �IP� as well as diffusion limited aggregation �DLA�
models �14,15�. These models can be used to study the orga-
nizing principles of vascular networks in a well-defined

framework. By matching global properties, such as distribu-
tions of the lengths of tubule complexes, to experimental
data, using automated image analysis, we can infer which
model classes and parameters are most reflective of angio-
genesis. It is thus prudent to strive to extract higher level
information or knowledge about vascular networks from cur-
rently available measurement data.

Just as the ensemble approach has been used to gain in-
sight into the behavior of genetic regulatory networks �16�, it
can also be very useful, in conjunction with experimental
measurements, for achieving a greater understanding of the
dynamical process of angiogenesis. This is the approach
taken by us here. The advantage of using such stochastic
models as IP and DLA is that they enable us to study domi-
nant coarse-scale properties of vascular networks without
having to consider fine-scale quantitative details. Further-
more, due to a number of latent factors that may not be
captured in a model, yet present in the environment of the
vascular network and affecting the formation of local struc-
tures, stochastic models may be more appropriate than deter-
ministic models. Another advantage is that these models are
computationally much simpler than the models that are based
on modeling various fine-scale details of neovascular
growth.

In this work, we quantitatively compare the properties of
real vascular networks with the properties of networks ob-
tained with the IP and DLA models, by focusing on the dis-
tributions of the lengths of tubule complexes. Both models
have several parameters that control their behavior. The
simulations are made with different sets of parameters to
obtain networks with different properties. The real vascular
networks are obtained with the TCS Cellworks Angiokit
�Buckingham, UK�, a commercially available in vitro angio-
genesis assay �17�. The quantitative properties of these net-
works are obtained with ANGIOQUANT, an image analysis
tool that we have made freely available �see Ref. �26�� �18�.
We also present evidence that the distribution of the lengths
of real tubule complexes follows a power law.
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The TCS Cellworks Angiokit assay is based on co-
culturing endothelial cells with fibroblasts in wells arranged
in a plate. Nine wells were treated with 2 ng/ml vascular
endothelial growth factor �VEGF�, a potent angiogenic
stimulator. The effects of the growth factor can be seen with
a light microscope, as the tubule complexes �connected vas-
cular structures� are large. Each of the nine wells was imaged
with a digital camera attached to a light microscope. Figure 1
shows an example of an obtained image. The total length of
each tubule complex in each image was then obtained with
ANGIOQUANT.

The invasion percolation growth model was introduced in
1983 by Wilkinson and Willemsen �19�. The model is based
on a lattice of potential growth sites. It is initialized by as-
signing a random number for each potential growth site, and
by occupying a single site at the center of the lattice. The
initially occupied site can also be called a seed. Growth is
thereafter possible only in the sites adjacent to an occupied
site. In each time step, the site that has the lowest number
assigned to it gets occupied. The IP model is thus a stochas-
tic model that produces a single connected structure. The size
of the structure can be controlled by the number of time
steps. It is important to select the size of the lattice large
enough with respect to the time steps, so as not to affect the
shape of the structure that is grown.

We propose to use the IP model with multiple seeds that
are positioned randomly as the model is initialized. This re-
sults in the growth of multiple structures, the sizes of which
are not predefined by any of the parameters of the model.
The structures can also merge to form a single structure.
Thus the number of seeds is not necessarily the same as the
number of structures that are present when the growth is
halted.

We have also added an elongation factor e� �0,1� into
the IP model. At each time step, the values assigned to the
growth sites that are adjacent to an endpoint of the existing
structure are multiplied by 1−e. If the value of the elonga-
tion factor is greater than 0, growth in the endpoint neigh-
borhoods is promoted, which results in more elongated struc-
tures. The value e=0 corresponds to no elongation.

The modified IP model was run with several different pa-
rameters sets. The size of the lattice was always 400�400
growth sites. The numbers of time steps N used were 1000,

2000, and 3000, the numbers of seeds n were 1, 5, 10, and
20, and the elongation factor e took the values 0, 0.2, 0.5,
0.8, and 0.9. The model was run with all combinations of
these parameters, totalling 60 different sets of parameters.
The simulation was repeated 334 times for each parameter
set.

The diffusion limited aggregation growth model was in-
troduced in 1981 by Witten and Sander �20�. The model is
initialized by occupying a single site at the center of a lattice
of potential growth sites. Growth particles are then released
one by one from random sites that are at least a minimum
distance from the center of the lattice. Each particle diffuses
�walks randomly� until it hits a site adjacent to an occupied
site, in which case it becomes part of the growing structure
with a preset sticking probability ps. If a particle touches the
boundary of the lattice in its random walk, it is removed and
another one is released.

The model can also include local amplification, whereby
the particles are released in periods of Np particle releases,
and after each period, F additional particles are released at
each growth site of that period. Thus after each period of Np
particle releases, local amplification increases the growth
probability at the sites neighboring a site that was occupied
within that period. Biologically, local amplification of
growth factor levels can be achieved by autocrine release of
growth factors �15�. This means that the growing structure
itself is a source of growth factors. In the DLA model, elon-
gated growth can be further promoted by using a higher
sticking probability pe in endpoint neighborhoods than in
other potential growth sites.

We propose to use the DLA model with multiple seeds
that are positioned randomly as the model is initialized. This
results in the growth of multiple structures, which can merge
to form a single structure. We also use separate launching
and killing circles on a square lattice �21�. Each particle is
released from a random site on the launching circle and it is
removed if it hits the killing circle. Therefore the launching
circle must have a smaller diameter than the killing circle.

The modified DLA model was run using the launching
and killing circle sizes 400 and 420 growth sites, respec-
tively. The number of released particles N was always
10 000. The numbers of seeds n were 1, 5, 10, 20, and 25.
With the chosen lattice size and number of released particles,
using a larger number of seeds is not possible, because that
would cause the structures to outgrow the lattice. The stick-
ing probabilities ps and pe both took the values 0.4, 0.8, and
1. The period length Np took the values 10 and 100 and the
local amplification factor F took the values 0, 1, and 2. The
model was run with all combinations of these parameters,
totalling 270 different sets of parameters. The simulation was
repeated 208 times for each parameter set.

The tubule complex lengths obtained from the experimen-
tal angiogenesis data were accumulated to form a single data
set that contains the length of 2529 tubule complexes. With
both growth models, the obtained structures were skeleton-
ized before their lengths were measured. This was done with
the well-known thinning algorithm by Guo and Hall �22�.
The structures were skeletonized, because skeletonization
was also performed in the ANGIOQUANT software for the ex-
perimental angiogenesis data. Skeletonization ensures that

FIG. 1. A well treated with VEGF.
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the width of the structures is always one pixel �growth site�,
which makes measuring their lengths straightforward.

When multiple seeds are used, each simulation produces
multiple connected structures. These structures are clearly
not statistically independent. To ensure independence be-
tween the structures that we include in the study, we ran-
domly select only one structure from each simulation. Thus
with the IP model the data sets for each parameter set contain
the lengths of 334 structures, and with the DLA model each
data set contains the lengths of 208 structures.

Each data set was normalized by dividing each tubule
complex length with the length of the longest tubule complex
in the respective data set. This enables us to use the empirical
�Kaplan-Meier� cumulative distribution function �23� to
compare the tubule complex length distributions of the ob-
tained simulated data sets with the tubule complex length
distribution obtained from the experimental angiogenesis
data.

In the following discussion, the word “model” refers to a
model together with its parameters. The tubule length distri-
butions are compared by calculating the mean square error
�MSE� between each pair of empirical cumulative distribu-
tion functions. The procedure of picking the structures ran-
domly from each of the simulated images along with the
consecutive MSE calculation is repeated 1000 times. The
model with the lowest mean over the 1000 MSE values is
assumed to be the one providing the best fit to the experi-
mental data. The mean of the MSE values alone does not tell
us whether the difference between the distributions produced
by different models is statistically significant. Therefore, we
used the t-test to make this assessment.

The MSE values obtained with the IP model using differ-
ent parameters are shown in Fig. 2. The MSE values above
0.4 are all equal and correspond to the IP model with one
seed. We can conclude that if there is just one seed in the IP
model, the fit to the experimental data is poor irrespective of

the other parameters. This is because in the case of one seed
the size of the structure grown is always equal to N.

In Fig. 2 the indices 1–12, 13–24, 25–36, 37–48, and
49–60 correspond to the elongation factors e=0, e=0.2, e
=0.5, e=0.8, and e=0.9, respectively. We immediately see
that, other parameters being equal, the smaller the elongation
factor, the better the fit. In particular, the best fit �the lowest
MSE value� is obtained with e=0, a value which is equiva-
lent to using the IP model without the elongation factor. This
is an interesting result, since it implies that simpler models
are preferred.

The indices 1–4, 5–8, and 9–12 correspond to the time
step values N=1000, N=2000, and N=3000. Clearly, the
best fit is obtained using 3000 time steps. The indices 9, 10,
11, and 12 correspond 1, 5, 10, and 20 seeds, respectively.
The lowest MSE value is obtained with n=10. In summary,
the best fit was obtained with the following set of param-
eters:

�N = 3000, n = 10, e = 0� .

The respective MSE value is 0.190.
Figure 2 also reveals that when n and e are kept constant

and N is varied, the best fit is always obtained with N
=3000. Similarly, when N and e are kept constant, the best fit
is always obtained with n=10.

The MSE values obtained with the DLA model using dif-
ferent parameters are shown in Fig. 3. In the figure, the in-
dices 1–54, 55–108, 109–162, 163–216, and 217–270 corre-
spond to simulations with 25, 20, 10, 5, and 1 seeds,
respectively. It can be clearly seen that the best fit �the lowest
MSE value� is obtained with 25 seeds. Moreover, other pa-
rameters being equal, the higher the number of seeds, the
better the fit. Also, as the number of seeds is increased, the
effect of the other parameters on the fit increases. For ex-
ample, with five or fewer seeds, the other parameters have
almost no effect on the fit, whereas with 25 seeds the MSE
ranges between 0.245 and 0.366 depending on the other pa-
rameters.

For the sake of improved visualization, the first 54 indices
that correspond to simulations with 25 seeds are replotted in
Fig. 4. The indices 1–18, 19–36, and 37–54 correspond to the
local amplification factors F=2, F=1, and F=0. Clearly, F
=2 always provides a better fit than the smaller values of the
local amplification factor. This is in line with some of the
results reported in earlier studies �15�.

The indices 1–6, 7–12, and 13–18 correspond to the stick-
ing probabilities pe=1, pe=0.8, and pe=0.4, respectively.

FIG. 2. The MSE values obtained with the IP model using dif-
ferent parameters.

FIG. 3. The MSE values obtained with the DLA model using
different parameters.

FIG. 4. The MSE values obtained with the DLA model using 25
seeds.
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Clearly, the fit with pe=1 is somewhat better than with pe
=0.8 and much better than with pe=0.4. Since the MSE val-
ues for indices 1–6 are all very close to each other, it can be
concluded that the sticking probability ps and the local am-
plification period Np have only a small effect on the fit. In-
dices 1–2, 3–4, and 5–6 correspond to ps=1, ps=0.8, and
ps=0.4, respectively, and it can be seen that ps=0.4 produces
a better fit than ps=0.8 or ps=1. Indices 5 and 6 correspond
to Np=10 and Np=100, respectively, and it can be seen that
Np=10 produces a slightly better fit than Np=100. In sum-
mary, the best fit was obtained with the following set of
parameters:

�n = 25, ps = 0.4, pe = 1, Np = 10, F = 2� .

The respective MSE value is 0.245.
We found that the IP model in its simplest form provides

a better fit than the DLA model. With the parameters that
provide the best fits, the MSE values are 0.190 and 0.245 for
the IP and DLA models, respectively. The latter value is ap-
proximately 1.29 times as high as the former value, so the fit
with the IP model is significantly better.

Finally, we have found that the tubule complex length
distribution in the experimental angiogenesis data follows a
power law. This may suggest that such a power law distribu-
tion provides optimal efficiency of blood transfer. However,
more work needs to be carried out to determine why this
distribution is optimal. One possible explanation for the
power law behavior is that large tubule complexes have more
potential branching points than small tubule complexes.
Since tubule complexes can grow either by branching or at
the endpoints of existing branches, large tubule complexes
have more potential to grow than small tubule complexes.
Thus the larger a tubule complex is, the faster it grows. This

is akin to preferential attachment, which is one of the mecha-
nisms known to give rise to power law degree distributions
in networks �24�. The histogram of the tubule complex
length data is plotted on a log-log scale in Fig. 5. Indeed,
because the power law appears to be ubiquitous in many
other contexts, such as metabolic networks of many organ-
isms, social networks, the world wide web, the Internet, and
others �25�, similar underlying organizational principles may
play a major role in angiogenesis.
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FIG. 5. The power law behavior of VEGF data.
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